145 research outputs found

    Reference on copy number variations in pleomorphic xanthoastrocytoma: Implications for diagnostic approach

    Get PDF
    Pleomorphic xanthoastrocytoma (PXA) poses a diagnostic challenge. The present study relies on methylation-based predictions and focuses on copy number variations (CNV) in PXA. We identified 551 tumors from patients having received the histologic diagnosis or differential diagnosis pleomorphic xanthoastrocytoma (PXA) uploaded to the web page www.molecularneuropathology.org. Of these 551 tumors, 165 received the prediction “methylation class (anaplastic) pleomorphic xanthoastrocytoma” with a calibrated score >=0.9 by the brain tumor classifier version v12.8 and, therefore, were defined the PXA reference set designated mcPXAref. In addition to these 165 mcPXAref, 767 other tumors received the prediction mcPXA with a calibrated score >=0.9 but without a histological PXA diagnosis. The total number of individual tumors predicted by histology and/or by methylome based classification as PXA, mcPXA or both was 1318, and these were designated the study cohort. The selection of a control cohort was guided by methylation-based predictions recurrently observed for the other 386/551 tumors diagnosed as histologic PXA. 131/386 received predictions for another entity besides PXA with a score >=0.9. Control tumors corresponding to the 11 most common other predictions were selected, adding up to 1100 reference cases. CNV profiles were calculated from all methylation datasets of the study and control cohorts. Special attention was given to the 7/10 signature, gene amplifications and homozygous deletion of CDKN2A/B. Comparison of CNV in the subsets of the study cohort and the control cohort were used to establish relations independent of histological diagnoses. Tumors in mcPXA were highly homogenous in regard to CNV alterations, irrespective of the histological diagnoses. The 7/10 signature commonly present in glioblastoma, IDH-wildtype, was present in 15-20% of mcPXA, whereas amplification of oncogenes (likewise common in glioblastoma) was very rare in mcPXA (<1%). In contrast, the histology-based PXA group exhibited high variance in regard to methylation classes as well as to CNVs. Our data add to the notion, that histologically defined PXA likely only represent a subset of the biological disease

    Mosaic Amplification of Multiple Receptor Tyrosine Kinase Genes in Glioblastoma

    Get PDF
    SummaryTumor heterogeneity has been implicated in tumor growth and progression as well as resistance to therapy. We present an example of genetic heterogeneity in human malignant brain tumors in which multiple closely related driver genes are amplified and activated simultaneously in adjacent intermingled cells. We have observed up to three different receptor tyrosine kinases (EGFR, MET, PDGFRA) amplified in single tumors in different cells in a mutually exclusive fashion. Each subpopulation was actively dividing, and the genetic changes resulted in protein production, and coexisting subpopulations shared common early genetic mutations indicating their derivation from a single precursor cell. The stable coexistence of different clones within the same tumor will have important clinical implications for tumor resistance to targeted therapies

    Blockade of MMP14 Activity in Murine Breast Carcinomas: Implications for Macrophages, Vessels, and Radiotherapy

    Get PDF
    Background: Matrix metalloproteinase (MMP) 14 may mediate tumor progression through vascular and immune-modulatory effects. Methods: Orthotopic murine breast tumors (4T1 and E0771 with high and low MMP14 expression, respectively; n = 5-10 per group) were treated with an anti-MMP14 inhibitory antibody (DX-2400), IgG control, fractionated radiation therapy, or their combination. We assessed primary tumor growth, transforming growth factor β (TGFβ) and inducible nitric oxide synthase (iNOS) expression, macrophage phenotype, and vascular parameters. A linear mixed model with repeated observations, with Mann-Whitney or analysis of variance with Bonferroni post hoc adjustment, was used to determine statistical significance. All statistical tests were two-sided. Results: DX-2400 inhibited tumor growth compared with IgG control treatment, increased macrophage numbers, and shifted the macrophage phenotype towards antitumor M1-like. These effects were associated with a reduction in active TGFβ and SMAD2/3 signaling. DX-2400 also transiently increased iNOS expression and tumor perfusion, reduced tissue hypoxia (median % area: control, 20.2%, interquartile range (IQR) = 6.4%-38.9%; DX-2400: 1.2%, IQR = 0.2%-3.2%, P = .044), and synergistically enhanced radiation therapy (days to grow to 800mm3: control, 12 days, IQR = 9-13 days; DX-2400 plus radiation, 29 days, IQR = 26-30 days, P < .001) in the 4T1 model. The selective iNOS inhibitor, 1400W, abolished the effects of DX-2400 on vessel perfusion and radiotherapy. On the other hand, DX-2400 was not capable of inducing iNOS expression or synergizing with radiation in E0771 tumors. Conclusion: MMP14 blockade decreased immunosuppressive TGFβ, polarized macrophages to an antitumor phenotype, increased iNOS, and improved tumor perfusion, resulting in reduced primary tumor growth and enhanced response to radiation therapy, especially in high MMP14-expressing tumor

    Deformable image registration between pathological images and MR image via an optical macro image

    Get PDF
    Computed tomography (CT) and magnetic resonance (MR) imaging have been widely used for visualizing the inside of the human body. However, in many cases, pathological diagnosis is conducted through a biopsy or resection of an organ to evaluate the condition of tissues as definitive diagnosis. To provide more advanced information onto CT or MR image, it is necessary to reveal the relationship between tissue information and image signals. We propose a registration scheme for a set of PT images of divided specimens and a 3D-MR image by reference to an optical macro image (OM image) captured by an optical camera. We conducted a fundamental study using a resected human brain after the death of a brain cancer patient. We constructed two kinds of registration processes using the OM image as the base for both registrations to make conversion parameters between the PT and MR images. The aligned PT images had shapes similar to the OM image. On the other hand, the extracted cross-sectional MR image was similar to the OM image. From these resultant conversion parameters, the corresponding region on the PT image could be searched and displayed when an arbitrary pixel on the MR image was selected. The relationship between the PT and MR images of the whole brain can be analyzed using the proposed method. We confirmed that same regions between the PT and MR images could be searched and displayed using resultant information obtained by the proposed method. In terms of the accuracy of proposed method, the TREs were 0.56 ± 0.39 mm and 0.87 ± 0.42 mm. We can analyze the relationship between tissue information and MR signals using the proposed method

    Role of vascular density and normalization in response to neoadjuvant bevacizumab and chemotherapy in breast cancer patients

    Get PDF
    Preoperative bevacizumab and chemotherapy may benefit a subset of breast cancer (BC) patients. To explore potential mechanisms of this benefit, we conducted a phase II study of neoadjuvant bevacizumab (single dose) followed by combined bevacizumab and adriamycin/cyclophosphamide/paclitaxel chemotherapy in HER2-negative BC. The regimen was well-tolerated and showed a higher rate of pathologic complete response (pCR) in triple-negative (TN)BC (11/21 patients or 52%, [95% confidence interval (CI): 30,74]) than in hormone receptor-positive (HR)BC [5/78 patients or 6% (95%CI: 2,14)]. Within the HRBCs, basal-like subtype was significantly associated with pCR (P = 0.007; Fisher exact test). We assessed interstitial fluid pressure (IFP) and tissue biopsies before and after bevacizumab monotherapy and circulating plasma biomarkers at baseline and before and after combination therapy. Bevacizumab alone lowered IFP, but to a smaller extent than previously observed in other tumor types. Pathologic response to therapy correlated with sVEGFR1 postbevacizumab alone in TNBC (Spearman correlation 0.610, P = 0.0033) and pretreatment microvascular density (MVD) in all patients (Spearman correlation 0.465, P = 0.0005). Moreover, increased pericyte-covered MVD, a marker of extent of vascular normalization, after bevacizumab monotherapy was associated with improved pathologic response to treatment, especially in patients with a high pretreatment MVD. These data suggest that bevacizumab prunes vessels while normalizing those remaining, and thus is beneficial only when sufficient numbers of vessels are initially present. This study implicates pretreatment MVD as a potential predictive biomarker of response to bevacizumab in BC and suggests that new therapies are needed to normalize vessels without pruning
    corecore